Enhancing glutamate transport: mechanism of action of Parawixin1, a neuroprotective compound from Parawixia bistriata spider venom.
نویسندگان
چکیده
Previous studies have shown that a compound purified from the spider Parawixia bistriata venom stimulates the activity of glial glutamate transporters and can protect retinal tissue from ischemic damage. To understand the mechanism by which this compound enhances transport, we examined its effects on the functional properties of glutamate transporters after solubilization and reconstitution in liposomes and in transfected COS-7 cells. Here, we demonstrate in both systems that Parawixin1 promotes a direct and selective enhancement of glutamate influx by the EAAT2 transporter subtype through a mechanism that does not alter the apparent affinities for the cosubstrates glutamate or sodium. In liposomes, we observed maximal enhancement by Parawixin1 when extracellular sodium and intracellular potassium concentrations are within physiological ranges. Moreover, the compound does not enhance the reverse transport of glutamate under ionic conditions that favor efflux, when extracellular potassium is elevated and the sodium gradient is reduced, nor does it alter the exchange of glutamate in the absence of internal potassium. These observations suggest that Parawixin1 facilitates the reorientation of the potassium-bound transporter, the rate-limiting step in the transport cycle, a conclusion further supported by experiments showing that Parawixin1 does not stimulate uptake by an EAAT2 transport mutant (E405D) defective in the potassium-dependent reorientation step. Thus, Parawixin1 enhances transport through a novel mechanism targeting a step in the transport cycle distinct from substrate influx or efflux and provides a basis for the design of new drugs that act allosterically on transporters to increase glutamate clearance.
منابع مشابه
Neurochemical characterization of a neuroprotective compound from Parawixia bistriata spider venom that inhibits synaptosomal uptake of GABA and glycine.
The major contribution of this work is the isolation of a neuroprotective compound referred to as 2-amino-5-ureidopentanamide (FrPbAII) (M(r) = 174) from Parawixia bistriata spider venom and an investigation of its mode of action. FrPbAII inhibits synaptosomal GABA uptake in a dose-dependent manner and probably does not act on Na(+), K(+), and Ca(2+) channels, GABA(B) receptors, or gamma-aminob...
متن کاملNeurobiological activity of Parawixin 10, a novel anticonvulsant compound isolated from Parawixia bistriata spider venom (Araneidae: Araneae)
The neurobiological activity of Parawixin 10, isolated from Parawixia bistriata spider venom, was investigated. Cannulas were implanted in the lateral ventricles of Wistar rats (200-250 g, n=6-8 per group) to perform anticonvulsant and behavioral assays, and synaptosomes from cerebral cortices of male Wistar rats were used for neurochemical studies. The results indicate that pretreatment with P...
متن کاملParawixin1: a spider toxin opening new avenues for glutamate transporter pharmacology.
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from glutamatergic nerve terminals, glial and neuronal glutamate transporters remove glutamate from the synaptic cleft to terminate synaptic transmission and to prevent neuronal damage by excessive glutamate receptor activation. In this issue of Molecular Pharmacology, Fontana et al. (p. 12...
متن کاملBiochemical and Functional Characterization of Parawixia bistriata Spider Venom with Potential Proteolytic and Larvicidal Activities
Toxins purified from the venom of spiders have high potential to be studied pharmacologically and biochemically. These biomolecules may have biotechnological and therapeutic applications. This study aimed to evaluate the protein content of Parawixia bistriata venom and functionally characterize its proteins that have potential for biotechnological applications. The crude venom showed no phospho...
متن کاملSynthetic biology increases efficiency of Escherichia coli to produce Parawixia bistriata spider silk protein
Background Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. With synthetic biology it is possible to express recombinant spider silk proteins, which are characterized by a highly repetitive rich glycine and alanine sequence [1]. However, production of high molecular weight spider silk protein can be difficu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 72 5 شماره
صفحات -
تاریخ انتشار 2007